Products suited to this guided test*
  • 20 A / 60 A DC (low amps) current clamp

    £94.00
  • *At Pico we are always looking to improve our products. The tool used in this guided test may have been superseded and the product above is our latest version used to diagnose the fault documented in this case study.

Coil-on-plug primary voltage and current (2-wire)

The purpose of this test is to investigate the primary voltage and current within a 2-wire Coil on Plug (COP) unit.

 

WARNING

This test involves measuring a potentially hazardous voltage.

Please ensure you follow manufacturers' safety instructions and working practices and ensure the rated voltage for all accessories you are using meets or exceeds the expected voltage.

To avoid possible damage to your scope, you may need to use an attenuator for this test.

Scopes with a 200 V range, such as PicoScope 4x25 models, do not need an attenuator for this test.

All other PicoScope Automotive models need an attenuator on the channel input. You can use either a 10:1 or a 20:1 attenuator provided that you adjust the PicoScope software accordingly. Select from the appropriate Channel Options menu:

  • Probe > x10 for a 10:1 attenuator
  • Probe > x20 for a 20:1 attenuator

 

How to perform the test

View connection guidance notes.

  1. Use manufacturer data to identify COP unit circuit functions.
  2. Connect PicoScope Channel A. to the coil supply circuit.
  3. Connect the low amp clamp to PicoScope Channel B, select the 20 A scale and zero the clamp before attaching to the same coil supply circuit.
  4. Start the engine and allow it to idle.
  5. Minimize the help page. You will see that PicoScope has displayed an example waveform and is preset to capture your waveform.
  6. Start the scope to see live data.
  7. With your waveforms on screen stop the scope.
  8. Stop the engine and turn the ignition off.
  9. Use the Waveform Buffer, Zoom and Measurements tools to examine your waveform.

Note 

The orientation of the current clamp relative to the wire will determine whether it has a positive or negative output. If a live waveform does not appear on your screen, or appears to be inverted, try reversing the orientation of the clamp.

Example waveform

Waveform notes

Channel A: Coil supply voltage

The waveform being monitored is the supply voltage to the coil. The supply is at the battery or charging voltage of 12 volts or more. When the coil's primary circuit is switched on, the voltage drops and remains at a low level until the current in the primary circuit reaches the target of 5.5 amps, at which point the supply voltage is allowed to spike for ignition.

Channel B: Primary ignition current

The example waveform above shows the current-limiting circuit in operation. The current switches on as the dwell (ECU controlled ground) period starts and rises until approximately 5.5 amps is reached in the primary circuit. At this point the current is released at the point of ignition. The length of time from the initial switching-on point to the moment the current is released depends on engine speed. The lower the engine speed, the shorter the current ramp; then the ramp lengthens with increasing engine revs.

Waveform Library

Go to the drop-down menu bar at the lower left corner of the Waveform Library window and select, ignition coil primary voltage or ignition coil primary current.

Further guidance

Primary Voltage

Historically, the supply voltage was present as soon as the ignition switch was turned to the 'on' position. Modern systems, however, do not provide a supply until the key is turned to the 'crank' position and the engine turns. A simple fault such as a non-functioning crank angle sensor may result in a loss of supply voltage, simply because the electronic control circuits do not recognize that the engine is rotating.

Primary Current

The example waveform shows the current in the primary circuit switches on as the dwell period starts, and rises until a level of 5.5 amps is reached.

As the engine speed increases, the dwell angle expands to maintain a constant coil saturation time and therefore constant energy. The coil saturation time can be measured by placing one time ruler at the beginning of the dwell period and the other at the end of the current ramp. The distance between the rulers will remain exactly the same regardless of engine speed.

GT161

Disclaimer
This help topic is subject to changes without notification. The information within is carefully checked and considered to be correct. This information is an example of our investigations and findings and is not a definitive procedure. Pico Technology accepts no responsibility for inaccuracies. Each vehicle may be different and require unique test settings.

Help us improve our tests

We know that our PicoScope users are clever and creative and we’d love to receive your ideas for improvement on this test. Click the Add comment button to leave your feedback.

Add comment

Your email address will not be published. Required fields are marked *

Guided test: Coil-on-plug primary voltage and current (2-wire)