
Slide-1 09.09.2019

LIN Basics

Lipowsky Industrie-Elektronik GmbH

Slide-2 09.09.2019

➢ 1 wire bus (+ Gnd and Vbat)

➢ Master / Slave concept

➢ Only one master at a time

➢ Master allocates the bus, nobody
speaks without permission

➢ Bus speed 9600...19200 Bit/s

➢ Often there are several LIN buses in one
vehicle, e.g. each door can have its
own LIN bus, further buses for air
conditioning actuators and seat
adjustment can be available.

Master

LIN

Slave1

Slave2

Slave3

LIN-Basics

Slide-3 09.09.2019

➢Bi-directional communication via a line through
open-collector output stages.

➢ The necessary pull-up is distributed over the nodes:

Master Pull-Up 1 Kiloohm

Slave Pull-Up 30 Kiloohm

➢ In order to avoid collisions right from the start, LIN
works with a time slot method.

➢ The master assigns the bus itself or a node for a
defined time by sending a certain feature.

➢During this time the bus is then available to this
node, which can place data on the bus.

Master Slave1

Slave2

Slave3

LIN

LIN Single Wire Hardware

Slide-4 09.09.2019

A LIN bus with one master and 3 slaves can be reduced to the
simplified circuit diagram shown on the left.

As soon as one of the nodes activates its output switch, the bus
will have a low level (Dominant State), only if all output
switches are open, the bus will be pulled up to its high level

(Recessive State).

All pull-up resistors are connected in parallel so that the
effective pull-up resistance value corresponds to the parallel
connection of all pull-up resistors.

Since only the low level is determined by an active switch, the
rising edge of the LIN bus signal also depends on the resulting
value of the total pull-up resistance.

The lower the pull-up resistance, the steeper the rising edge
and vice versa.

Too steep edges can lead to EMC problems and too flat edges
can lead to misinterpretation by the UART. Therefore a
correctly dimensioned pull-up resistor is very important!

12V board supply

LIN bus

Ground

The LIN bus has only 2 states:

Recessive high state (all switches open)

Dominant low state (at least 1 switch closed)

All information that is transferred via the bus is coded by the chronological sequence of these

two states.

LIN-bus dominant / recessive states

Slide-5 09.09.2019

There are 3 basic signal patterns on the LIN
bus:

1. Wake up Event
Low level pulse with 250us...5 ms length
Slave recognition Low pulse >= 150 us, Slave
should be able to process commands 100
ms after the rising edge of the bus.

2. Break
Low level with a length of at least 13 bit
times followed by a high level (break
delimiter) with a minimum duration of 1 bit
time, is always sent by the master to mark
the start of a new transmission (frame).

3. Asynchronous transmitted character
(0....255)
Any 8 bit character (UART transmission) with
1 start bit, 8 data bits, 1 stop bit, no parity

The LIN Sync field corresponds to the
character 0x55.

UART Frame 10 bits

start
bit

stop
bit

data
bit0

data
bit1

data
bit2

data
bit3

data
bit4

data
bit5

data
bit6

data
bit7

 Data 0x00 ...0xFF

 UART Frame 10 bits

start
bit

stop
bit

data
bit0

data
bit1

data
bit2

data
bit3

data
bit4

data
bit5

data
bit6

data
bit7

 Data byte 0x55 = SYNC

0V

12V
Break duration

minimal 13 * bittime

677us (19200)
1354us (9600)

Break delimiter
minimal 1 bittime

0V

12V

250us

5000us

LIN-bus communication primitives

Slide-6 09.09.2019

Frame Header:

➢Break field

➢Sync field

➢Protected Identifier

Data Section

➢Data1…Data N

➢Checksum byte

LIN Frame Bestandteile

Indicates the beginning of a new frame, at least 13 bit times long, in order

to be able to distinguish it reliably from all other characters.

Allows the resynchronization of slave nodes with imprecise clock sources by

measuring the bit times and reconfiguring the UART baud rate. Sync field is

always sent by the master.

A character with the frame ID. The 8-bit character contains 2 parity bits to

protect the identifier, resulting in a total range of 0...63.

1...8 Data bytes which contain the information that will be transmitted.

Contains the inverted 8 bit sum with Carry handling over all data bytes

(Classic checksum) or over data bytes and Protected Id (Enhanced

checksum)

LIN V.1.x => Classic Checksum

LIN V.2.x => Enhanced Checksum

Data transfer on the LIN bus

The smallest unit is a frame.

Slide-7 09.09.2019

Protected Id

The frame ID identifies the frame.

It is 8 bits in size, but 2 bits of it are used as parity bits, leaving only 6 bits for
frame identification. Thus there are only 64 different frames on a LIN bus.

Paritybit P1 (ID.7) Paritybit P0 (ID.6) Identifier Bits ID.5 - ID.0

!(ID.1^ID.3^ID.4^ID.5) ID.0^ID.1^ID.2^ID.4 0…63

Id dec Id hex PID Id dec Id Hex PID Id dec Id hex PID Id dec Id hex PID

0 0x00 0x80 16 0x10 0x50 32 0x20 0x20 48 0x30 0xF0

1 0x01 0xc1 17 0x11 0x11 33 0x21 0x61 49 0x31 0xB1

2 0x02 0x42 18 0x12 0x92 34 0x22 0xE2 50 0x32 0x32

3 0x03 0x03 19 0x13 0xD3 35 0x23 0xA3 51 0x33 0x73

4 0x04 0xc4 20 0x14 0x14 36 0x24 0x64 52 0x34 0xB4

5 0x05 0x85 21 0x15 0x55 37 0x25 0x25 53 0x35 0xF5

6 0x06 0x06 22 0x16 0xD6 38 0x26 0xA6 54 0x36 0x76

7 0x07 0x47 23 0x17 0x97 39 0x27 0xE7 55 0x37 0x37

8 0x08 0x08 24 0x18 0xD8 40 0x28 0xA8 56 0x38 0x78

9 0x09 0x49 25 0x19 0x99 41 0x29 0xE9 57 0x39 0x39

10 0x0A 0xCA 26 0x1A 0x1A 42 0x2A 0x6A 58 0x3A 0xBA

11 0x0B 0x8B 27 0x1B 0x5B 43 0x2B 0x2B 59 0x3B 0xFB

12 0x0C 0x4C 28 0x1C 0x9C 44 0x2C 0xEC 60 0x3C 0x3C

13 0x0D 0x0D 29 0x1D 0xDD 45 0x2D 0xAD 61 0x3D 0x7D

14 0x0E 0x8E 30 0x1E 0x5E 46 0x2E 0x2E 62 0x3E 0xFE

15 0x0F 0xCF 31 0x1F 0x1F 47 0x2F 0x6F 63 0x3F 0xBF

LIN frame security - Protected Id

Slide-8 09.09.2019

According to the LIN specification,
the checksum is formed as an
inverted 8-bit sum with overflow
treatment over all data bytes
(classic) or all data bytes plus
protected id (enhanced):

C-sample code:

uint8_t checksum_calc (uint8_t ProtectedId, uint8_t * pdata,

uint8_t len, uint8_t mode){

uint16_t tmp;

uint8_t i;

if (mode == CLASSIC)

tmp = 0;

else

tmp = ProtectedId;

for (i = 0; i < len; i++)

{

tmp += *pdata++;

if (tmp >= 256)

tmp -= 255;

}

return ~tmp & 0xff; }

The 8 bit sum with overflow
treatment corresponds to the
summation of all values, with 255
being subtracted each time the
sum >= 256.

Whether the Classic or Enhanced Checksum is used for a frame is
decided by the master on the basis of the node attributes defined in
the LDF when sending / receiving the data.

Classic checksum for communication with LIN 1.x slave nodes and
Enhanced checksum for communication with LIN 2.x slave nodes.

LIN frame security - Checksum

Slide-9 09.09.2019

Most LIN nodes contain the following 2 components:

➢ Microcontroller with integrated UART

➢ LIN transceiver

The UART converts data bytes into asynchronous serial patterns
for transmission and decodes data bytes from the received serial
data stream.

It also generates break and wake-up signal patterns; this can be
implemented either by special LIN functions of the UART or by
sending a binary 0x0 at a different baud rate or by bit banging
the TXD port under timer control.

The LIN transceiver translates the logic levels of the
microcontroller (typ. 3...5V) into the LIN voltage range (8...18V)
and converts the full-duplex RXD/TXD interface into a 1-wire half-
duplex interface.

Further functions of a typical LIN transceiver are:

➢ Timeout Monitoring of the dominant level

➢ Slope control of the signal edges

➢ Switching to a high-speed mode to enable baud rates greater
than 20 Kbit (e.g. ECU flashing)

2nd generation Baby-

LIN systems use NXP

MC33662 LIN transceiver

LIN node

LIN bus
8...18V

Microcontroller

UART

LIN Tranceiver

TXD RXD

LIN

Enable

3V/5V

Node specific
hardware

LIN Bus Hardware

Slide-10 09.09.2019

LIN frame transmission / reception

We now know how a LIN frame is structured.

Now we look at how a LIN frame is used to transfer
information on the bus.

The frame header is always sent by the master.

It is received by all connected nodes and they check
the frame ID.

If a node determines that it is the publisher for this frame
ID, it places the data for this frame on the bus.

So there is always only one sender (publisher) for the
data of a particular frame.

The master waits for the data from the slave, these must
appear within a certain maximum time.

So the master can recognize a missing slave by the
missing data.

Master Slave1

LIN
Slave3

Slave2

Slide-11 09.09.2019

LIN frame transmission / reception

Of course, there are also frames that transfer data from the
master to a slave, e.g. to transmit a command to a slave. In
these cases the master is defined as publisher for this frame.

Here the master sends the frame header and the data
section.

The master cannot recognize whether the addressed slave
has received the frame or not.

Therefore, there is no confirmation mechanism for the LIN
frame transmission, which can be found, for example, on the
CAN bus.

Of course, the whole concept only works if every node
(Master/Slave) connected to the bus knows whether it is the
publisher for a certain frame (=ID) or not.

The assignment of the frames to the nodes is defined in the
LIN Description File (LDF). Each frame (frame identifier) is
assigned a node as publisher.

Master

LIN
Slave3

Slave1

Slave2

Slide-12 09.09.2019

LIN description file LDF

LDF - Lin Description File

➢ Format and syntax of the LDF (LinDescriptionFile) are described in the LIN
specification. This specification has been developed by the LIN Consortium, in
which various parties such as car manufacturers, suppliers and tool suppliers
were involved. This means that the LDF specification is not dependent on a
single manufacturer.

➢ Each LIN bus in a vehicle has its own LDF.

➢ This LDF summarizes all the characteristics of this specific LIN bus in one
document.

➢ Which nodes are there on the bus?

➢ Which frames are defined for the bus (PID, number of data bytes, publisher)?

➢ Which signals are contained in a frame (signal mapping)?

➢ In which order should the frames appear on the bus (Schedule Table)?

Example: Byte Value Temperature (0...255)
0..253 temp [°C] = 0.8 * value - 35 0 => -35°C 100 => 45°C 253 => 167.4°C
254 means sensor not installed, signal not available
255 means sensor error, no valid value available

Slide-13 09.09.2019

Sample LDF file

LDF header

Node section

Signal section

LIN_description_file ;

LIN_protocol_version = "1.3" ;

LIN_language_version = "1.3" ;

LIN_speed = 19.200 kbps ;

Nodes {

Master:MasterECU,1.0000 ms,0.1000 ms ;

Slaves:Slave1Motor,Slave2Sensor;

}

Signals {

MessageCounter:8,0x00,MasterECU,Slave1Motor,Slave2Se

nsor;

Ignition:1,0x0,MasterECU,Slave1Motor,Slave2Sensor;

WiperSpeed:3,0x0,MasterECU,Slave1Motor;

Temperature:8,0xFF,MasterECU,Slave1Motor,Slave2Sensor;

WiperActive:1,0x0,Slave1Motor,MasterECU;

ParkPosition:1,0x0,Slave1Motor,MasterECU;

CycleCounter:16,0x00,Slave1Motor,MasterECU;

StatusSensor:8,0x00,Slave2Sensor,MasterECU;

ValueSensor:8,0x00,Slave2Sensor,MasterECU;

}

Slide-14 09.09.2019

Sample LDF file

Frame section

Schedule table

Signal encoding section

Encoding to signal mapping

Frames {

MasterCmd:0x10,MasterECU,4{MessageCounter,0;
Ignition,8;

WiperSpeed,9;
Temperature,16; }

MotorFrame:0x20,Slave1Motor,4{WiperActive,0;
ParkPosition,1;
CycleCounter,16; }

SensorFrame:0x30,Slave2Sensor,2{StatusSensor,0;
ValueSensor,8; }

}

Schedule_tables {

Table1 { MasterCmd delay 20.0000 ms ;
MotorFrame delay 20.0000 ms ;
SensorFrame delay 20.0000 ms ;}

}

Signal_encoding_types {

EncodingSpeed { logical_value,0x00,"Off" ;
logical_value,0x01,"Speed1" ;
logical_value,0x02,"Speed2" ;
logical_value,0x03,"Interval" ;}

EncodingTemp {
physical_value,0,253,0.8,-
35,"degrees C" ;
logical_value,0xFE,"Signal not
supported" ;
logical_value,0xFF,"Signal not
available" ;}

}

Signal_representation {

EncodingSpeed:WiperSpeed;
EncodingTemp:Temperature;

}

Slide-15 09.09.2019

LIN application frames

With the information from an LDF, you can assign all frames
that appear on the bus to your publisher using the PID.
You can also interpret the data regarding the signals it
contains…

LDF definition:

MasterECU = master

Slave1Motor = slave (wiper motor)

Frame with ID 0x10 has 4 data bytes

Publisher = MasterECU (master)

Databyte1.bit 0...7 message counter

Databyte2.bit 0 IgnitionOn (Klemme15)

Databyte2.bit 1...3 wiper speed

Frame with ID 0x20 has 4 data bytes

Publisher = Slave1Motor

Databyte1.bit 0 wiper active

Databyte1.bit 1 park position

Databyte2.bit 0...7 CycleCounter LSB

Databyte3.bit 0...7 CycleCounter MSB

Frame with ID 0x30 has 2 data

bytes

Publisher = Slave2Sensor

Databyte1 Sensor Status

Databyte2 ValueSensor

Break Sync Identifier Databyte1 Databyte2 CheckSumBreak Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4 Break Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4

ID=0x10
PID=0x50

ID=0x20
PID=0x20

ID=0x30
PID=0xF0

Slide-16 09.09.2019

LIN application frames

Break Sync Identifier Databyte1 Databyte2 CheckSumBreak Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4 Break Sync Identifier Databyte1 Databyte2 CheckSumDatabyte3 Databyte4

ID=0x10
PID=0x50

ID=0x20
PID=0x20

ID=0x30
PID=0xF0

Frame with ID 0x30 has 2 data

bytes

Publisher = Slave2Sensor

Databyte1 Sensor Status

Databyte2 ValueSensor

Frame with ID 0x20 has 4 data bytes

Publisher = Slave1Motor

Databyte1.bit 0 wiper active

Databyte1.bit 1 park position

Databyte2.bit 0...7 CycleCounter LSB

Databyte3.bit 0...7 CycleCounter MSB

LDF definition:

MasterECU = master

Slave1Motor = slave (wiper motor)

Frame with ID 0x10 has 4 data bytes

Publisher = MasterECU (master)

Databyte1.bit 0...7 message counter

Databyte2.bit 0 IgnitionOn (Klemme15)

Databyte2.bit 1...3 wiper speed

With the information from an LDF, you can assign all frames
that appear on the bus to your publisher using the PID.
You can also interpret the data regarding the signals it
contains…

Slide-17 09.09.2019

LIN Scheduling

The order in which the frames are sent to the LIN bus
is defined in a so-called Schedule Table. One or
more Schedule Table(s) are defined in each LDF.

Each table entry describes a frame by its LDF name
and a delay time, which is the time that is made
available to the frame on the bus.

A Schedule Table is always selected as active
and is executed by the master.

The master places the corresponding frame headers on the bus and the publisher
assigned to this frame places the corresponding data section + checksum on the
bus.

Several schedules can help to adapt the communication to certain operating
states.

The 3 Schedule Tables in the example above can optimize the acquisition of data
from the engine so that it contains the corresponding frame with different repetition
rates.

In TableFast, a motor signal would be updated every 10 ms, while in Standard Table
(Table1), the signal would only be updated every 60 ms.

Only the master can switch the Schedule Table. Thus the master application
determines which frames appear on the bus in which time sequence.

Schedule_tables {

Table1 {MasterCmd delay 20.0000 ms ;
MotorFrame delay 20.0000 ms ;
SensorFrame delay 20.0000 ms ;}

SensorFast {MasterCmd delay 10.0000 ms ;
SensorFrame delay 10.0000 ms ;
MotorFrame delay 10.0000 ms ;
SensorFrame delay 10.0000 ms ;}

MotorFast {MotorFrame delay 10.0000 ms ;}

}

Slide-18 09.09.2019

LIN Frame Typen

Auf dem LIN Bus gibt es die folgenden Frame Typen:

In der Beispiel LDF haben wir die Unconditional Frames gesehen. Diese haben genau einen Publisher und

erscheinen dann auf dem Bus, wenn sie gemäß dem aktuell laufenden Schedule wieder dran sind.

The data always comes from the same node (Publisher) and are

transmitted with a constant time grid (Deterministic timing).

A kind of alias FrameId, which combines several Slave UCF's to an own

FrameId. If there is such an ETF in the schedule, only one node with

changed data will put it on the bus. This saves bandwidth - but with the

disadvantage of possible collisions. Due to the collision resolution, the bus

timing is no longer deterministic.

This is actually more a schedule entry type than a frame type, because

this SF combines several UCF's, which all have the master as publisher, in

one schedule entry. The master then decides which frame to actually

send, depending on which frame has new data.

A pair of MasterRequest (0x3c) and SlaveResponse (0x3D) frames. Used

to send information that is not described in the LDF. No static signal

mapping as with UCF, ETF and SF.

Unconditional frame (UCF)

Event triggered frame (ETF)

Sporadic frames (SF)

Diagnostic frames

Slide-19 09.09.2019

Frame type Event triggered Frame

Event triggered Frames (ETF)

ETF's were introduced to save bus bandwidth.

Example: 4 slave nodes in the doors detect the states of the
window lift buttons.
Each node has a frame definition (unconditional UCF) to publish its
key state, and it also has a second event triggered frame definition
(ETF) to publish the same frame data via another FrameId.

With UCF, the slave always sends the data.
With ETF, the slave only sends data if there is changed data.
In addition, the slave places the PID of the associated UCF in the
first data byte.

UCF / ETF have identical signal mappings, whereby in both frames
the first byte is not occupied with a signal, but is always filled with
the PID of the UCF.

So there are 2 possibilities to query the key states.

Via UCF frames, always works, but needs 4 frames.
Via ETF frame - this has then 3 answer variants: No slave replies, one
slave replies or several replies (collision).

ETF's are therefore slave frames with several possible publishers.

Master Slave1
LIN

Slave2

Slave3

Slave4

Frame Id’s given as PID in Hex

PID DB0 DB1

UCF 11 11 status

ETF 50 11 status

PID DB0 DB1

UCF 92 92 status

ETF 50 92 status

PID DB0 DB1

UCF D3 D3 status

ETF 50 D3 status

PID DB0 DB1

UCF 14 14 status

ETF 50 14 status

Slide-20 09.09.2019

Frame type Event triggered Frame

The advantage of the larger bus
bandwidth is bought with the
possible collisions that can occur
with ETF's if more than 1 node has
new data for the same ETF.

The master recognizes such a
collision by an invalid checksum.

In Lin 1.3/2.0 collision resolution
without own collision table is
defined.

Here the master will now fill the
running schedule, the ETF slot, with
the UTF ID's one after the other until

it has queried all publishers possible
for this ETF.

After that the master uses the ETF in
this schedule slot again.

No
Answer

1 Answer

Collision

Switching
to UCF

frames in
ETF slot

Slide-21 09.09.2019

Frame type Event triggered Frame

With the LIN specification V.2.1 an
additional mechanism for collision
resolution was introduced - the Collision
Schedule Table.

This Schedule Table can be assigned to
the ETF definition in the LDF.

After detecting a collision, the master
switches directly to the assigned Collision
Schedule Table.

Typically, all UCF's of the ETF are listed
there one after the other.

This means that the master can query the
data of all nodes potentially involved in a
collision much faster after a collision.

A possible disadvantage of this new
method might be that the Collision
Schedule does not provide a completely
deterministic timing of the original
schedule anymore, because the Collision
Schedule is inserted additionally!

1 Answer

Collision
triggers
switch to
Collision
Schedule
Table

No
Answer

Slide-22 09.09.2019

LIN diagnostic frames 0x3c/0x3d

0x3C MasterRequest:
Request Data define the
node and the requested
action.

0x3D SlaveResponse:
Data generated by the
addressed slave; content
depends on request

Master Request and Slave Response have special properties

• They are always 8 bytes long and always use the Classic Checksum.

• No static mapping of frame data to signals; frame(s) are containers for transporting
generic data.

• Request and response data can consist of more than 8 data bytes. For example,
the 24 bytes of 3 consecutive slave responses can form the response data. You
then need a rule for interpreting the data. This method is also used for the DTL
(Diagnostic Transport Layer).

Break Sync Identifier Databyte1 Databyte2 Databyte3 Databyte4 Databyte5 Databyte6 Databyte7 Databyte8 CheckSum

ID=0x3c
MasterRequest

ID=0x3D
SlaveResponse

Slide-23 09.09.2019

The MasterRequest - SlaveResponse mechanism can be used to transmit a wide
variety of data because it is a universal transport mechanism.

A main application is the diagnosis and End of Line (EOL) configuration of nodes.

In the field there is a whole range of different protocols, depending on the vehicle
and ECU manufacturer.

• A lot of proprietary diagnostics or EOL protocols

• DTL based protocols (Diagnostic Transport Layer)

Other protocols are typically based on the DTL layer:

• Keyword 2000 Protocol (ISO 14230 -1 to 4)

• UDS (Unified Diagnostic Services) (ISO 14229-1:2013)

These protocols are not part of the LDF definition.

Only the two frames 0x3C (MasterRequest) and SlaveResponse (0x3D), which serve as
transport containers for the actual protocol data, are defined in the LDF.

More details about the Diagnostic Frames and related protocols will be discussed in
the 2nd part of the LIN Workshop.

LIN Protokolle mit Diagnoseframes

Slide-24 09.09.2019

Currently, the use of an additional security/safety feature for LIN frames can be observed
with an increasing tendency.

It is an 8 bit CRC, which is formed by a certain block of data (e.g. Data2..Data7) and then
also placed in the data section (e.g. in Byte Data1).

In addition to numerous proprietary implementations, a standard according to the Autosar
E2E Specification is currently establishing itself, whereby there are several profiles here.
However, first implementations deviating from the standard have already been viewed (e.g.
BMW).

In contrast to the LIN Checksum calculation, which is disclosed in the LIN specification, the
special parameters for these InData CRC's are usually only available against NDA (non
disclosure agreement) from the manufacturer.

The CRC not only ensures transmission security, but is also a security feature because it can
be defined in such a way that certain functions of a system can only be accessed by
authorized remote peers.

All CRC Autosar implementations share an additional 4 bit counter in the data. This counter
is incremented every time a frame is sent.

LIN frame security – In data CRC (optional)

Slide-25 09.09.2019

Example of a CRC generation with a
CRC data block starting at frame byte
DB3.

The 4 bit counter lies in the low nibble
of the first byte of the CRC data
block.

Profile type (1A, 1B, 1C) and counter
value determine which 1 or 2 bytes of
the 16 bit data ID precede the real
frame data to form a virtual data
block of 5 or 6 bytes.

The CRC is then formed by this virtual
data block and placed in front of the
data block in the frame.

LIN frame security – Autosar E2E Profile1

Slide-26 09.09.2019

Example of a CRC generation with a
CRC data block starting from frame
byte DB3 to Autosar Profile 2. The 4 bit
counter is located in the low nibble of
the first byte of the CRC data block.

The value of the 4 bit counter selects
one of 16 given 8 bit data ID values.

This value is then appended to the
real 4 byte CRC block so that the
total CRC is formed over a 5 byte
block.

In contrast to profile 1, the counter
here runs from 0...15 (with profile 1
0...14).

LIN frame security – Autosar E2E Profile 2

Slide-27 09.09.2019

The definition of the parameters for a particular Indata CRC's definition is not part of
the LDF specification.

In practice, there are different ways of documenting the CRC parameter
specifications in a concrete project.

Sometimes they are stored as comments in an LDF file.

Or they are given in a description of the signals and frames (message catalog) of a
vehicle manufacturer (PDF/HTML file).More recent description formats for bus systems
such as Fibex (Asam) or ARXML (Autosar) already contain syntax elements for
defining such Indata CRCs.

If necessary, a file in one of these formats can be obtained from the client.

Here one must observe the market further, in order to see what establishes itself here
as mainstream.

With the LINWorks PC software the necessary parameters for the CRC's can be
included in a simulation description.

The LINWorks extension for importing new description formats such as Fibex or ARXML
is planned for the future.

LIN frame security – In data CRC

Slide-28 09.09.2019

How to create a LIN application

Typical LIN application:

A LIN node (slave) and a suitable LDF file are
available.

An application is to be implemented in which a
simulated LIN master allows the node to be
operated in a certain way.

Tasks

Operate LIN-node for

➢ functional test

➢ endurance run

➢ software validation

➢ demonstration

➢ production,
EOL (End of Line)

LDF

Slide-29 09.09.2019

How to create a LIN application

However, the information in the LDF is usually not sufficient.
The LDF describes the access and interpretation of the
signals, but the LDF does not describe the functional logic
behind these signals.

Therefore you need an additional signal description which
describes the functional logic of the signals (XLS signal
matrix or other text file).

LDF

Signal

description

Tasks

Operate LIN-node for

➢ functional test

➢ endurance run

➢ software validation

➢ demonstration

➢ production,
EOL (End of Line)

Slide-30 09.09.2019

How to create a LIN application

If the task also requires diagnostic communication,
an additional specification of diagnostic services
supported by the nodes is required (protocol type
and services).

Only the two frames 0x3C/0x3D with 8 data bytes
each are defined in the LDF, but not their meaning.

LDF

Specification

Diagnosis

Services

Signal

description

Tasks

Operate LIN-node for

➢ functional test

➢ endurance run

➢ software validation

➢ demonstration

➢ production,
EOL (End of Line)

Slide-31 09.09.2019

Lin Workflow in LINWorks

LDF

SDF
SessionDescriptionFile

Bus simulation based on
LDF data

Implementation of
functional logic through

macro and event
programming

Implementation of
diagnostic services via

protocol feature

SDF is
loaded to
device

Optional hosting system
PC or PLC

USB, Digital IO,
RS-232, LAN
connection
via DLL or
ASCII API

LIN-
Bus

SDF
The linchpin in LINWorks-

based applications

Specification

Diagnosis

Services

Signal

description

Slide-32 09.09.2019

LINWorks components

LDF

LINWorks
LDF-

Editor

LINWorks
Session-

Configurator

Baby-Lin
DLL

LINWorks
SimpleMenu

Own
Applikation

SDF

USB

Baby-LIN

LDF-Editor:

View LDF
Create LDF
Customize LDF

Session-Configurator:

Which nodes should be simulated?

Which signals are to be displayed?

Macros, events and actions to
define the functional logic

Definition of signal functions

Definition of diagnostic services

Slide-33 09.09.2019

LINWorks SessionConf

Minimal setup:

➢ Import LDF file into Session
Configurator.

➢ Define emulation setup.

Open
SDF

Import
LDF

1-Click here to
select LDF

2-Click here to start
SDF creation

Finalize SDF
creation

Slide-34 09.09.2019

LINWorks SessionConf

Defining the display contents for the PC
software SimpleMenu (optional)

Save as SDF file

=> The first SDF is created!

Drag & drop to
define signals for
display

Double-Click to
toggle between
editor/monitor item

Slide-35 09.09.2019

LINWorks Simple Menu

Step 1: Open SimpleMenu application

Step 2: Connect with Baby-LIN

Step 4: Start simulation

LIN-Bus running!

Show signal

values in real time

Change signal

values in real time

Frame Monitor with timestamp

and checksum version (1.x/2.x)

Step 3: Load SDF into Baby-LIN

Slide-36 09.09.2019

LINWorks Simple Menu

Start, Stop, Wakeup and
Sleep command

Restart command allows to
start the bus without
resetting the signals to the
default values from the
LDF/SDF.

This happens when using
the Start function.

Nodes can be
dynamically
switched on and
off during
simulation.

The screen content

can also be

configured here as a

supplement to the

definition from the

SDF.

Switching to
another
schedule

Slide-37 09.09.2019

SessionConf – Section Properties

Section properties

Here you can enter a name and a
description for the section.

The flag "Store SDF in device persistently"
is important for stand-alone operation.

If it is set, the SDF is automatically stored in
the dataflash of the device during the
download.

If it is not set, the SDF is stored in the RAM of the device
and is then deleted again after a Power-OFF-ON

cycle.

Speed[Bit/s]

Here the LIN baud rate is displayed, which was taken over from the LDF, you can
overwrite this baud rate with another value if necessary.

The baud rate must be entered here in a CAN section, since it cannot be taken
over from the DBC and is therefore set to 0 after the DBC import.

Slide-38 09.09.2019

SessionConf – Bus Description

Bus description

This area is used to display all objects taken over from the LDF such as nodes,
frames, signals, schedules, etc.

You can also change some of them here. Frame id's or slot times can be
adjusted in Schedule Tables.

Slide-39 09.09.2019

SessionConf - Emulation Setup

Emulation setup

Here you define which of the
nodes defined in the LDF is to
be simulated by the Baby-LIN.

Depending on which nodes
are connected, you should
only select nodes that are not
physically present.

In our SimpleWiper example
we have not connected any
real nodes, so we simulate all
three nodes.

Set unused bit to 1 checkbox

If not all bits in a frame are occupied with a signal, you can decide here whether
these unoccupied bits are set with a 1 or a 0 during transmission.

In SDF-V2 this option did not exist yet, because unmapped bits were always set to 0.

Slide-40 09.09.2019

Session Conf – Tables

The new SDF feature 'Tables' allows to define data for the
functional logic in tabular form.

1.) Creating a table

2.) Enter a name for the table

3.) Definition of columns

A column can contain text (String) or
numbers (Signed/Unsigned Integer).

For numbers, the size (1...64 bit) can be
defined for memory space optimization.

Format defines the display or input
format for number columns.

Decimal
Hexadecimal
Binary

Here is an example table for defining test
variants for a wiper endurance run.

Column 0 contains the name of the test,
columns 1...3 define specific time specifications
for the individual test variants.

Number 32 => 32
Number 32 => 0x20
Number 32 => 0b100000

Slide-41 09.09.2019

Session Conf – Tables

Here the completed example table with 5 test variants, column 0 contains
the name of the test, columns 1...3 define certain time specifications for
the individual test variants.

Macros contain commands for accessing these table values.

You can implement procedures that differ only in parameter values in a single
macro and read and use the parameters from the corresponding table line,
depending on the test type you have set.

How to access the values is described in the explanation of the macro
commands in the Table section.

The tables occupy much less memory space than virtual signals and are a
better alternative for applications with many identical nodes (ambient lighting,
climate actuators).

Slide-42 09.09.2019

Session Conf – Virtual signals

Virtual signals can be defined in addition to the signals defined in the LDF. These do
not appear on the bus, but can be used in macros and events.

These signals are very useful for implementing functional logic.

They can also be mapped to Protocol Frames (Protocol Feature).

The size of a virtual signal is 1...64 bit adjustable - important when used in the
protocol feature.

Each signal has a default value that is set when the SDF is loaded.

Checkbox Reset on Bus start

Allows to emulate the behavior
of SDF-V2 files.

There all signals (also the virtual
ones) were loaded with the
default values at every bus start.

Check box signed

By default, a signal is always
treated as unsigned.

With this checkbox you can turn
it into a signed signal.

The comment column allows you to enter notes and explanations about the
variable.

Slide-43 09.09.2019

Session Conf – Virtual signals

Use case example

Implementation of a cycle counter by using the motor signal parking
position.

Each time the signal state changes from 0 to 1, the event increments the
virtual signal AuxCycleCounter.

Slide-44 09.09.2019

SessionConf – Virtual signals system variables

Special virtual signals => system variables

There are virtual signals with reserved names.

If these are used, a virtual signal is created once and

at the same time a certain behavior is associated with

this signal.

This way you have access to timer, input and output

resources and system information.

Depending on the hardware version, there may be a

different number of supported system variables.

All names of system variables start with prefix @@SYS

Often used system variables (timing functions/system information):

@@SYSBUSSTATE

@@SYSTIMER_UP

@@SYSTTIMER_DOWN

@@SYSTIMER_FAST_UP

@@SYSTIMER_FAST_DOWN

gives information about LIN communication:

0 = no bus voltage,

1 = bus voltage, but no schedule is running,

2 = schedule is running and frames are sent.

generates an up counter that counts as soon as its value is not

equal to 0. The counter tick is one second.

creates a down counter that counts every second until its

value is 0.

like SYSTIMER_UP or _DOWN, but the timer tick here is 10 ms.

Slide-45 09.09.2019

SessionConf – Virtual signals system variables

Weitere @@SYSxxx Systemvariablen zur I/O Kontrolle

@@SYSDIGIN1…x

@@SYSDIGOUT1…x

@@SYSPWMOUT1…4

@@SYSPWMPERIOD

@@SYSPWMIN1..2

@@SYSPWMINFULLSCALE

Man kann zum Beispiel die @@SYSDIGIN1…x und die @@SYSPWMIN1..2 Systemvariable sehr gut
mit einem ONCHANGE Event kombinieren.

So kann man zum Beispiel den Wert eines digitalen Eingangs mit nur einer Eventdefinition auf
ein LIN Bus Signal übertragen.

Damit man sich diese reservierten Namen für die Systemvariablen und deren Schreibweise
nicht alle merken muss, gibt es im SessionConf einen System Variablen Wizard.

Access to the digital inputs (e.g. Baby-LIN-RM-II or Baby-LIN-RC-II)
Access to digital outputs (e.g. Baby-LIN-RM -II)

Generation of PWM output signals on up to 4 outputs. The signal value
between 0 and 100 [%] defines the pulse/pause ratio.

This system variable defines the fundamental frequency for the PWM
output. It can be set between 1 and 500 Hz.

The two inputs DIN7 (@@SYSPWMIN1) and DIN8 (@@SYSPWMIN2) are
supported as PWM inputs (Baby-LIN-RM-II).

This system variable allows to define the fullscale value (corresponding to
100%). By default, this is set to 200 by the system.

Slide-46 09.09.2019

SessionConf – System variables wizard

Information on the
function of the system
variable in focus

Easy creation of system
variables with the wizard.

Drop-down selection menu
for restricting the display to
the variables that are
available for this device
type.

Slide-47 09.09.2019

Signal functions - Counter

If the Baby-LIN replaces the LIN bus master, it should generate the frames and
signals exactly as the original control unit in the vehicle does (residual bus
simulation).

There are signals in real applications that need special handling, e.g. message
counters that increment their value every time they are sent on the bus, and
when they reach their maximum value, they start at 0 again.
This function can be automated in the SDF via a signal function.

Another example of signal functions are CRC's in the data.

Click here to add signal function

Double Click here to set up signal

function

Drag & drop to

select signal

Slide-48 09.09.2019

Signal functions - CRC

Signal Function CRC
With this signal function you can define an Indata checksum or CRC for specific frames
according to various algorithms

➢ Checksum 8 Bit Modulo

➢ CRC-8

➢ CRC-16

➢ XOR

➢ CRC AUTOSAR Profile1/2

The CRC algorithm can be freely configured with initial value, polynomial and XOR
value.

For the standard Autosar variants the correct default values are suggested.

adds all bytes belonging to the data block and uses the LSB
of the sum.

forms an 8 bit CRC over the data block according to the
specified parameters

forms a 16 bit CRC via the data block according to the
specified parameters.

links all bytes of the data block via XOR.

forms a CRC according to Autosar specification E2E Profile
1/2 and other implementations.

Slide-49 09.09.2019

Signal functions – CRC example Checksum

Here the checksum is formed in a frame with a length of 4 bytes (= length of
Frame MasterCmd) over the second to fourth data byte (Param *1 = 1 => block
starts with 2nd data byte, Param *2 = 3 => block length 3, block thus comprises
2nd data byte...4th data byte) and then stored in the first data byte (Param *3 = 0
=> 1st data byte).

The parameters *4 to *7 define an optional prepend and postpend buffer with up
to 8 byte values, which are then prepended or appended to the data of the real
frame before the calculation.

This is used to implement special cases in which, for example, the FrameId is to
be included in the CRC calculation.

Slide-50 09.09.2019

Signal functions – CRC example Autosar

Here an Autosar CRC according to profile 2 is formed in a frame with 4 bytes
length (= length of Frame MasterCmd) over the second to fourth data byte.
Here too, the data block over which the CRC is formed comprises the 2nd
data byte to the 4th data byte.

For Autosar CRC there is then a whole series of parameters.

Slide-51 09.09.2019

Session Conf - Macros

Macros are used to combine multiple operations into a sequence.

Macros can be started by events or, with SDF-V3, can also be called from other
macros in the sense of a Goto or Gosub. The DLL-API calls a macro with the
macro_execute command.

Macros play an important role in the implementation of functional logic in an SDF.

Slide-52 09.09.2019

Session Conf - Macros

First you have to create a new
macro, either with the
context menu (right-click)
or with the plus button.

Then you add commands to this
macro. The command Start Bus is
always inserted; it is then changed
to the desired command.

There are several
categories from which
you can select macro
commands, such as
signals, bus, LIN etc..

Slide-53 09.09.2019

Session Conf - Macros

Each macro command consists of several parts.

Command
The operation to be performed by the Macro command.

Condition
Here you can define a condition that must be fulfilled to
actually execute the command.

Comment

A comment that allows you to make notes about the macro
command, e.g. what to do with it on the bus.

Label
This marking of a macro command line can be used when
selecting a jump command.

With the latest LINWorks
version and Baby-LIN
firmware every macro
command can be
disabled. Then it will be
treated as if it were not
present.

Slide-54 09.09.2019

Macro Local signals

All Macro Commands can use signals from the LDF (bus
signals) and signals from the Virtual Signal section (in the
Command or in the Condition).

In addition, there is another group of signals that only exists in
the context of a macro: the local signals.

Each macro always provides 13 local signals:

_LocalVariable1, _LocalVariable2, ..., _LocalVarable10,

_Failure, _ResultLastMacroCommand, _Return

The last 3 provide a mechanism to return values to a call
context (_Return, _Failure) or to check the result of a previous
macro command. (_ResultLastMacroCommand).

The signals _LocalVariableX can be used e.g. as temporary
variables in a macro.

E.g. to save intermediate results when performing a
calculation with several calculation steps.

Slide-55 09.09.2019

Macro Parameter handover

A macro can have up to
10 parameters when called.

In the macro definition these
parameters can be given names, which are
then displayed in brackets behind the macro
name on the left side of the menu tree.

The parameters end up in the signals
_LocalVariable1...10 of the called macro.

If no or less than 10 parameters are passed, the
remaining _LocalVariableX signals get the
value 0.

To return the result of a macro to the caller, the
local signals _Return and _Failure are available.

Slide-56 09.09.2019

Macro Result return

The local signals _Failure and _Return are used

to return results to a call context.

Call by other macro (Gosub)

The calling macro can use the _LastMacroResult

Command signal to access the return value of

the called macro which it has stored in

the _Return command.

If the signal failure in the called macro was set to

a value other than 0, this value is also automatically

transferred to the _Failure variable of the calling

macro.

Call by MacroExec Cmd for Baby-LIN-MB-II

A macro called by the Ascii API returns the value of

the _Return variable as a positive result.

If the _Failure variable is set in the executed macro,

the return value is @50000+<_Failure>.

Attention: Result return only with blocking Macro call.

Important note: The value of _ResultLastMacroCommand is only valid in the Macro command

line directly after the Gosub command, because this signal always contains the result of the

previous command.

The _Failure variable has a different behavior. It is automatically transferred to the calling macro

when setting in the called macro when returning if it has a value unequal to 0.

Slide-57 09.09.2019

Macro Signal commands

Macro
command

Description

Set signal Assign a constant value to a signal.

Add signal
Add a constant to a signal value (constant can also be
negative).

Set from signal Set a signal with the value of another signal.

Set bit Set or delete a specific bit of a signal.

Set Minimum
Assignment of the smallest value (corresponding to bit length
and signed property).

Set Maximum
Assignment of the largest value (corresponding to bit length
and signed property).

Set using
mathematical
operation

Define the value of a signal by a mathematical operation
between 2 signals or a signal and a constant. (+, -, *, /, >>, <<,
XOR, AND, OR)

Slide-58 09.09.2019

Macro Bus commands

Macro
command

Description

Start Resets all bus signals to the LDF default values.

Stop Stops the Lin Bus communication.

Restart Starts the LIN bus, but receives all signal values. No reset to LDF
default values.

Sleep Sends a Sleep Frame to the bus and stops Schedule.

Wakeup Sends a wakeup event and starts Schedule.

Set speed Sets the baud rate of the LIN bus to the entered value.

Freeze signals Blocks all subsequent signal changes until an unfreeze occurs.
Allows atomic signal changes in a frame.

Unfreeze signals Applies all accumulated signal changes since the last freeze.

Slide-59 09.09.2019

Macro Bus commands

Macro command Description

Inject frame Allows to send any frame without LDF definition.
With the latest LINWorks/Firmware version a blocking execution is also
supported.

Inject SDF frame New: Allows to send an SDF frame (LDF/DBC) without a schedule; the bus
must be started and the frame must be sent independently from the
current schedule and the bus signals must be updated accordingly (with
the ReadFrame).

Set frame mode
Deactivate and activate LIN frames in a schedule or toggle between no,
single shot or periodic transmission (CAN)

Execute service
Execution of a Protocol Service defined in the Protocol section.
Request/Response Frame pairs can be defined and virtual signals can be
mapped into request and response data.

Slide-60 09.09.2019

Macro LIN-Bus commands

Macro command Description

Select schedule Schedule switching optionally,

Schedule mode can also be transferred.

Set schedule mode Permanently assign an execution mode to a schedule table:

• Cyclic

• Single run

• Exit on complete

Force checksum Force a certain checksum type:

Automatic, V1(Classic Checksum), V2 (Enhanced Checksum)

Send Master Request Send a Master Request (Frame ID 3C), a Schedule with suitable 0x3C

Frame must run! Due to Inject and Execute Service Commands rather

obsolete.

Send DTL Request Deactivated: If the protocol feature has become unnecessary, it will

disappear in one of the next updates.

Slide-61 09.09.2019

Macro Flow Control commands

Macro command Description

Delay Delays macro execution by the specified time (ms).

Jump Branches to another command in the same macro.

Used for loops or branches, often in conjunction with a condition.

Event Deactivates and activates events.

Goto macro Branches to another macro; the remaining commands of the running

macros are no longer executed.

Gosub macro Call another macro. The running macro is continued after the Gosub

command, if the called macro was terminated.

The called macro can return a result (_Return/_Failure).

Exit Ends the execution of the current macro. If the macro was called by

another command via Gosub command, control is returned to the

calling macro.

Slide-62 09.09.2019

Macro Macro commands

Macro

command

Description

Start Starts another macro. This runs independently and parallel to the

current macro.

Stop Stops the processing of another macro.

Macroselection Starts a macro from a Macro Selection (group of macros) There are

several options for selecting the

macro from the Selection group.

Print Output of texts, signal values on the debug channel in the Simple

Menu.

Very helpful for troubleshooting macro programming.

Further information and output to additional channels in the future.

Slide-63 09.09.2019

Macro Exception commands

Macro command Description

Try Block Defines the beginning or end of a Try block.

Catch Block Defines the beginning or end of a Catch block.

Throw Triggers an exception with the given exception code anywhere (in

the try block or outside the try block).

Ignore Allows you to ignore certain exceptions for the following command.

For example, if an Execute Service error is the expected situation due

to a missing response.

Exception Record When an exception is raised by __ResultLastMacroCommand != 0 in a

try block or by a throw command, the exception code, macro

number and macro command line are stored in an ExceptionRecord.

With this command you can access these values.

Slide-64 09.09.2019

Macro Table commands

Macro command Description

Get Value Loads the value of a Table Cell (Table : Row : Col) into a signal.The

table, column and row selection can be defined using constants or

signal references.

Store Value Stores a signal value in a Table Cell (Table : Row : Col) Table, column

and row selection as constant or signal reference.

Table Count Sets the specified signal with the number of tables in this SDF section.

Row Count Sets the specified signal with the number of rows in the requested table.

This allows you to iterate over all lines of a table in a macro, for

example.

Column Count Sets the specified signal with the number of columns in the requested

table.

If there are tables in the SDF, the following

commands allow access.

The Get Value and Store Value operations are

currently only supported on the device for cells

of type Number.

The string values can already be read out via

DLL.

Slide-65 09.09.2019

Macro Table example

Use the TestType table in a macro.

The parameters for the SubMacros
RunSpeed1, RunSpeed2 and Pause are
read from the appropriate table row for
the selected test type (Signal
TestSelection).

Slide-66 09.09.2019

Drag & drop

to add

macros

SessionConf – Macro selection

Macro selection

A macro selection defines a group of
macros from which a macro can be
selected for execution.

Example: A macro selection to choose
between the macros RunSpeed1,
RunSpeed2 and StopMotor.

The selection can then be made using a
GUI Element, Event Action or Macro
Command (SDF-V3).

Drag & drop

Slide-67 09.09.2019

SessionConf – Device specific options

Device specific options

So far this section is only relevant for HARP users. Here you can define the
signals and key labels for the HARP Keyboard Menu.

There are also setting options for custom variants (e.g. WDTS).

Slide-68 09.09.2019

SessionConf – Device section

The Device Section (only in SDF-V3 files) allows to store the Target Configuration
directly in the SDF file.

It is still possible to configure the target device in the SimpleMenu, as it was only
possible in LINWorks V1.x.

If a SDF-V3 file contains a target configuration it is automatically transferred to
the device during the download.

Previous problems with forgotten Target Configuration at the customer are now
a thing of the past.

