PicoScope 7 Automotive
Available for Windows, Mac, and Linux, the next evolution of our diagnostic scope software is now available.
200 A / 2000 A (high amps) DC current clamp
*At Pico we are always looking to improve our products. The tool used in this guided test may have been superseded and the product above is our latest version used to diagnose the fault documented in this case study.
The purpose of this test is to assess the controlled output of the alternator in relation to electrical load on the battery.
View connection guidance notes.
Note
The orientation of the clamp relative to the wire will determine whether it has a positive or negative output. If a live waveform does not appear on your screen, or appears to be inverted, try reversing the orientation of the clamp.
These known good waveforms have the following characteristics:
When the engine is running, an alternator generates electrical energy to supply the vehicle’s on-board electrical systems and replace the battery charge consumed during cranking. Accurate ECM controlled charging is essential to the operation of Start-Stop systems, which place increased demands on starter batteries.
The alternator converts mechanical rotation to electrical energy by causing a magnetic field to rotate within a fixed set of windings. The changing magnetic field induces AC voltages within the windings, which are rectified by an arrangement of diodes to give a DC output.
Alternators with voltage regulators vary their output dependent on the electrical load, whereas ECM controlled alternator outputs depend on a variety of additional parameters, including the battery’s temperature and estimated states of health and charge. The other advantage of ECM control is that the alternator can be deenergised when not required, reducing torque and heat stress within the alternator and engine loading to improve fuel efficiency.
The rectification of the generated AC current creates a continuous series of voltage pulses, a ripple, within the alternator’s output. Periodically missing pulses or disruptions within the ripple indicate a problem with either the windings or the rectification diodes. Sharp spikes, usually downward, between the pulses indicate diode failure and the presence of unrectified AC voltage in the circuitry.
The alternator output can vary with engine speed, electrical load, battery condition and time since cranking. However, a consistent ripple must be maintained throughout these variations.
Turning on electrical consumers and increasing the engine speed will increase the alternator load which can provoke faults that are not evident at low loads. If the peak to peak output voltages are above 500 mV, the offending voltage spikes may disrupt other electrical systems.
For an accurate and reliable signal always connect at the alternator B+ terminal: it is convenient to measure the ripple directly at the battery positive terminal; however, the battery can dampen the waveform such that problems can be missed.
Typical symptoms of faulty alternator would be:
Alternator, or related, faults that can cause the above symptoms are:
Selection of component related Diagnostic Trouble Codes (DTCs):
P0620
P0621
P0622
P0623
P0624
P0625
P0626
View more
GT001-8
Disclaimer
This help topic is subject to changes without notification. The information within is carefully checked and considered to be correct. This information is an example of our investigations and findings and is not a definitive procedure.
Pico Technology accepts no responsibility for inaccuracies. Each vehicle may be different and require unique test
settings.
We know that our PicoScope users are clever and creative and we’d love to receive your ideas for improvement on this test. Click the Add comment button to leave your feedback.